Incremental text-to-speech, also known as streaming TTS, has been increasingly applied to online speech applications that require ultra-low response latency to provide an optimal user experience. However, most of the existing speech synthesis pipelines deployed on GPU are still non-incremental, which uncovers limitations in high-concurrency scenarios, especially when the pipeline is built with end-to-end neural network models. To address this issue, we present a highly efficient approach to perform real-time incremental TTS on GPUs with Instant Request Pooling and Module-wise Dynamic Batching. Experimental results demonstrate that the proposed method is capable of producing high-quality speech with a first-chunk latency lower than 80ms under 100 QPS on a single NVIDIA A10 GPU and significantly outperforms the non-incremental twin in both concurrency and latency. Our work reveals the effectiveness of high-performance incremental TTS on GPUs.
translated by 谷歌翻译
Noisy Student Training (NST) has recently demonstrated extremely strong performance in Automatic Speech Recognition (ASR). In this paper, we propose a data selection strategy named LM Filter to improve the performances of NST on non-target domain data in ASR tasks. Hypothesis with and without Language Model are generated and CER differences between them are utilized as a filter threshold. Results reveal that significant improvements of 10.4% compared with no data filtering baselines. We can achieve 3.31% CER in AISHELL-1 test set, which is best result from our knowledge without any other supervised data. We also perform evaluations on supervised 1000 hour AISHELL-2 dataset and competitive results of 4.72% CER can be achieved.
translated by 谷歌翻译
深Q学习网络(DQN)是一种成功的方式,将增强学习与深神经网络结合在一起,并导致广泛应用强化学习。当将DQN或其他强化学习算法应用于现实世界问题时,一个具有挑战性的问题是数据收集。因此,如何提高数据效率是强化学习研究中最重要的问题之一。在本文中,我们提出了一个框架,该框架使用深q网络中的最大均值损失(m $^2 $ dqn)。我们没有在训练步骤中抽样一批体验,而是从体验重播中采样了几批,并更新参数,以使这些批次的最大td-Error最小化。所提出的方法可以通过替换损耗函数来与DQN算法的大多数现有技术结合使用。我们在几个健身游戏中使用了最广泛的技术DQN(DDQN)之一来验证该框架的有效性。结果表明,我们的方法会导致学习速度和性能的实质性提高。
translated by 谷歌翻译
In this paper, we propose a robust 3D detector, named Cross Modal Transformer (CMT), for end-to-end 3D multi-modal detection. Without explicit view transformation, CMT takes the image and point clouds tokens as inputs and directly outputs accurate 3D bounding boxes. The spatial alignment of multi-modal tokens is performed implicitly, by encoding the 3D points into multi-modal features. The core design of CMT is quite simple while its performance is impressive. CMT obtains 73.0% NDS on nuScenes benchmark. Moreover, CMT has a strong robustness even if the LiDAR is missing. Code will be released at https://github.com/junjie18/CMT.
translated by 谷歌翻译
In this paper, we propose a novel framework dubbed peer learning to deal with the problem of biased scene graph generation (SGG). This framework uses predicate sampling and consensus voting (PSCV) to encourage different peers to learn from each other, improving model diversity and mitigating bias in SGG. To address the heavily long-tailed distribution of predicate classes, we propose to use predicate sampling to divide and conquer this issue. As a result, the model is less biased and makes more balanced predicate predictions. Specifically, one peer may not be sufficiently diverse to discriminate between different levels of predicate distributions. Therefore, we sample the data distribution based on frequency of predicates into sub-distributions, selecting head, body, and tail classes to combine and feed to different peers as complementary predicate knowledge during the training process. The complementary predicate knowledge of these peers is then ensembled utilizing a consensus voting strategy, which simulates a civilized voting process in our society that emphasizes the majority opinion and diminishes the minority opinion. This approach ensures that the learned representations of each peer are optimally adapted to the various data distributions. Extensive experiments on the Visual Genome dataset demonstrate that PSCV outperforms previous methods. We have established a new state-of-the-art (SOTA) on the SGCls task by achieving a mean of \textbf{31.6}.
translated by 谷歌翻译
Audio-Visual scene understanding is a challenging problem due to the unstructured spatial-temporal relations that exist in the audio signals and spatial layouts of different objects and various texture patterns in the visual images. Recently, many studies have focused on abstracting features from convolutional neural networks while the learning of explicit semantically relevant frames of sound signals and visual images has been overlooked. To this end, we present an end-to-end framework, namely attentional graph convolutional network (AGCN), for structure-aware audio-visual scene representation. First, the spectrogram of sound and input image is processed by a backbone network for feature extraction. Then, to build multi-scale hierarchical information of input features, we utilize an attention fusion mechanism to aggregate features from multiple layers of the backbone network. Notably, to well represent the salient regions and contextual information of audio-visual inputs, the salient acoustic graph (SAG) and contextual acoustic graph (CAG), salient visual graph (SVG), and contextual visual graph (CVG) are constructed for the audio-visual scene representation. Finally, the constructed graphs pass through a graph convolutional network for structure-aware audio-visual scene recognition. Extensive experimental results on the audio, visual and audio-visual scene recognition datasets show that promising results have been achieved by the AGCN methods. Visualizing graphs on the spectrograms and images have been presented to show the effectiveness of proposed CAG/SAG and CVG/SVG that could focus on the salient and semantic relevant regions.
translated by 谷歌翻译
With the fast development of big data, it has been easier than before to learn the optimal decision rule by updating the decision rule recursively and making online decisions. We study the online statistical inference of model parameters in a contextual bandit framework of sequential decision-making. We propose a general framework for online and adaptive data collection environment that can update decision rules via weighted stochastic gradient descent. We allow different weighting schemes of the stochastic gradient and establish the asymptotic normality of the parameter estimator. Our proposed estimator significantly improves the asymptotic efficiency over the previous averaged SGD approach via inverse probability weights. We also conduct an optimality analysis on the weights in a linear regression setting. We provide a Bahadur representation of the proposed estimator and show that the remainder term in the Bahadur representation entails a slower convergence rate compared to classical SGD due to the adaptive data collection.
translated by 谷歌翻译
Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption.
translated by 谷歌翻译
Model counting is a fundamental problem which has been influential in many applications, from artificial intelligence to formal verification. Due to the intrinsic hardness of model counting, approximate techniques have been developed to solve real-world instances of model counting. This paper designs a new anytime approach called PartialKC for approximate model counting. The idea is a form of partial knowledge compilation to provide an unbiased estimate of the model count which can converge to the exact count. Our empirical analysis demonstrates that PartialKC achieves significant scalability and accuracy over prior state-of-the-art approximate counters, including satss and STS. Interestingly, the empirical results show that PartialKC reaches convergence for many instances and therefore provides exact model counting performance comparable to state-of-the-art exact counters.
translated by 谷歌翻译
Robots are traditionally bounded by a fixed embodiment during their operational lifetime, which limits their ability to adapt to their surroundings. Co-optimizing control and morphology of a robot, however, is often inefficient due to the complex interplay between the controller and morphology. In this paper, we propose a learning-based control method that can inherently take morphology into consideration such that once the control policy is trained in the simulator, it can be easily deployed to robots with different embodiments in the real world. In particular, we present the Embodiment-aware Transformer (EAT), an architecture that casts this control problem as conditional sequence modeling. EAT outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired robot embodiment, past states, and actions, our EAT model can generate future actions that best fit the current robot embodiment. Experimental results show that EAT can outperform all other alternatives in embodiment-varying tasks, and succeed in an example of real-world evolution tasks: stepping down a stair through updating the morphology alone. We hope that EAT will inspire a new push toward real-world evolution across many domains, where algorithms like EAT can blaze a trail by bridging the field of evolutionary robotics and big data sequence modeling.
translated by 谷歌翻译